Lovable Prompting Guide for No Code Builders

Lovable Prompting Guide for No-Code Builders

Lovable is an Al-powered no-code platform that turns natural language prompts into working web
applications [1]. In Lovable, you build apps by describing them in plain English - the platform's Al
(powered by large language models) writes the code and designs the interface for you [2]. This guide will
walk beginner and intermediate no-code builders through the essentials of prompting in Lovable: how it
works, best practices for reliable results, real-world prompt examples for common app types, and pitfalls
to avoid.

How Lovable Prompting Works

Prompting means giving the Al clear textual instructions to perform a task [2]. In Lovable's case, your
prompt tells the Al what kind of app or feature to build - from the frontend Ul to backend logic. Unlike
traditional coding, you're communicating your intent to an Al which then generates code. Because Al does
not truly "understand” like a human (it predicts based on training data), the way you phrase your
prompt is critical for getting good results [3]. Well-crafted prompts greatly increase the chance that the Al
will produce your desired outcome. In short: better prompts lead to better apps [2].

When you start a project, you typically begin in Chat Mode - a conversational interface where you and the
Al discuss what to build . You can type a single prompt to generate an entire app or build step-by-step.
Either way, Lovable will ask the Al to create the project instantly based on your description. The
result is a live preview of your app in the editor. From there, you can continue refining by issuing new
prompts (or using the visual editor). Lovable also provides a Visual Edit mode (point-and-click interface)
for fine-tuning the layout or styling without prompts, and a Dev Mode where you can directly edit code if
needed. But as a no-coder, your primary tool is the prompt itself.

Some key things to know about how prompting works in Lovable:

e Stateful Conversations: Lovable's Al remembers the context of your current session. You can
iteratively refine your app by chatting - e.g. "Make that button blue" after an initial prompt. Many
builders spend most of their time in chat, planning and refining, before applying changes = . However,
keep prompts focused on one task at a time to avoid confusing the model with too many requests at
once.

¢ Instant Execution: By default, prompts in Lovable directly modify your project (adding files, changing
code). The Al "takes action" on your app. For safer experimentation, Lovable also has a Chat (Preview)
mode that lets you discuss or debug without immediately changing the app = [4]. Use Chat mode to
plan and verify ideas; switch to edit mode to apply them once you're confident [4].

e Context Window Limits: The Al has a limited memory of the conversation (context length). Very long
instructions or lots of prior history can cause it to "forget" earlier details [2]. If your project is complex,
you may need to remind the Al of important context or use Lovable's Knowledge Files feature to
provide persistent background info. (Knowledge Files let you store reference text like requirements or
style guides that the Al will always have available " ".)

Page 1 of 14

Lovable Prompting Guide for No Code Builders

e Project Data and Integrations: Lovable handles many backend details for you. For example, when
you create a new project, it can automatically set up a database and authentication via Supabase if
you need it [4]. You just have to prompt for features (like "add user login"). Likewise, Lovable supports
integrating APIs (email, payments, Al models, etc.) through special prompts - e.g. you can say "Connect

Stripe payments" or "Send emails with Resend" and Lovable knows how to wire those up = [6]. We'll see

examples of this later.

Understanding these basics, let's move on to how to write effective prompts.

Prompting Basics and Best Practices

Prompting is as much an art as a science. A great prompt clearly communicates what to build, any

. . . . [2] [2]
constraints or preferences, and the desired outcome, in a way the Al can easily follow . Here are some
core principles and best practices for Lovable prompting:

e Be Concise and Specific: Get to the point with your instructions. Avoid vague or wordy descriptions.
For example, instead of " want a page for stuff about users”, say "Create a user profile page using React
with fields for Name, Email, and Profile Picture.” Being specific reduces ambiguity. Extra fluff can confuse
the model [2]. Always include key details like the technology or style if it matters (e.g. "use Tailwind CSS

for styling").

e Provide Context and Requirements: Assume the Al has no common sense or prior knowledge
about your project beyond what you tell it [2]. Always provide relevant context. If you're building an e-
commerce app, mention things like "We sell physical products and need a shopping cart and checkout." If
you have a particular tech stack or library in mind (Next.js, Supabase, Stripe, etc.), explicitly state it in
the prompt [2]. The Al won't know these things unless you say them!

e State Constraints and Don'ts: If there are things the Al must not do or limits it should respect,
mention those constraints. For example: "The app should not use any paid APIs" or "Do not modify the
header component, only update the footer." The Al will follow such rules literally = [2]. Clearly separating

"what to do" from "what not to do" in your prompt helps prevent the Al from introducing unwanted

changes.

¢ Logical, Step-by-Step Structure: It often helps to break complex requests into steps or bullet
points so the Al can tackle them one by one [2]. Rather than one long paragraph with many
requirements, structure your prompt in sections or a list. You might describe the overall task, then list
features: e.g. "1. Create Ul for X, 2. Implement function Y, 3. Validate Z." This ordered approach ensures
the model addresses each part systematically [2]. Lovable's team suggests a format called C.L.E.A.R. -
which stands for Concise, Logical, Explicit, Adaptive, Reflective - as a checklist for prompt quality [2].
In practice, this means: write a brief, structured prompt, specify exactly what you want, be ready to
adjust based on output, and learn from what works.

e Use Training-Wheels Formatting (if needed): When you're new or the task is very complex, you can
even label parts of your prompt with headings like "Context: ...", "Task: ...", "Guidelines: ...",
2
"Constraints: ..." []. This is like a template that ensures you don't forget anything. For example:

Page 2 of 14

Lovable Prompting Guide for No Code Builders

Context: You are an expert full-stack developer using Lovable.

Task: Build a secure **login page** in React with email/password using Supabase.
Guidelines: Use a minimalist Ul with Tailwind CSS. Provide clear code comments.
Constraints: Only edit the "LoginPage’ component; *do not* modify other pages.

2
Breaking a prompt into sections like that can really help the Al understand your request []. Many

. . . - [2]
beginners start with this "structured prompt" style (the "training wheels" approach) ~ and gradually
move to more natural language once they're comfortable.

One Feature at a Time: Scope control is crucial. Especially for complex apps, don't try to get the Al to
build everything in one giant prompt. It's usually more reliable to prompt for one feature or page
at a time v . For instance, first prompt "Set up the project with a homepage and navigation". Next, "Add a
signup form". Then, "Implement the user dashboard page”, and so on. Lovable's Al performs best when it
can focus on a small, well-defined task in each prompt [7]. This also makes it easier to pinpoint and fix
issues if something goes wrong.

Iterate and Refine: Treat prompting as an interactive, iterative process. You're not expected to get
a perfect app in one go. After the Al's first output, test your app (click around in the preview, see if
everything works). If something isn't right - say the layout is off or a feature is missing - you can prompt
again to refine it. For example: "The login form is not centered. Please center it and make the button blue."
The Al can take that feedback and adjust the code. This iterative loop is normal in Lovable
development. In fact, you can even ask the Al how to improve its own output, which leads to an advanced
technique called Meta Prompting (covered later) where the Al suggests better prompts for you =

Leverage Visual Aids: Lovable allows you to attach images or screenshots to your prompt to
provide additional guidance [4]. This is incredibly useful for Ul design. For instance, if you sketch a
layout or have a reference design from Figma, you can paste a screenshot into Lovable and say "Make
it look like this." The Al will try to recreate the interface from the image. Screenshots of your app can
also be used for debugging (e.g. "See this mobile view screenshot - the sidebar looks broken on small
screens, please fix it" = [8]). Visual context can clarify what you mean far more than text alone, so use it
when applicable. (Tip: diagrams of flowcharts, Ul sketches, or example websites are all great candidates
to feed into Lovable to show what you want.)

Select & Edit for Precision: A unique feature in Lovable is the "Select" tool - you can click on a
specific element or component in the preview and then write a prompt to change just that part.
This helps target your instructions. For example, instead of saying "Change the title font size" generally,
you can select the title element and prompt "Make this heading larger". Behind the scenes, Lovable
knows which file or component you selected, so the Al will limit changes to that scope. This prevents
unintended side effects elsewhere in your app. Best practice: when tweaking an existing Ul, select the
component first so your prompt is grounded to that context (no ambiguity about what to modify) [7].
This way you avoid mistakes like the Al altering the wrong element because your description was too

generic.

Review Al Output and Logs: After each prompt, look at what the Al did. Lovable provides
logs/feedback when it applies changes; if there were errors (like code that didn't run), you might see
error messages or the app might break. Don't panic - use those clues. For instance, if a prompt causes
an error, you can copy the error message and ask the Al in chat, "Fix this error" or "Why did this error
happen?" Lovable's chat is quite good at debugging when you feed it the stack trace or error text el [4].

Page 3 of 14

Lovable Prompting Guide for No Code Builders

Also, if the Al's change wasn't what you wanted (e.g. wrong design), you can hit "Undo" (Lovable has an
undo function) and try rephrasing your prompt more clearly. Commonly, errors or weird outputs are
signs the prompt was misunderstood, so use them as feedback to clarify your next attempt.

Following these best practices sets you up for success. Now, let's explore some prompting strategies in
Lovable - from basic to advanced - that you can use as you gain experience.

Levels of Prompting: From Basics to Advanced

10
rel Visualizing different levels of prompt engineering - from "training wheels" (structured prompts) at level 1 up

to advanced meta-prompting at level 4. Lovable lets you start simple and gradually adopt more sophisticated
2
prompting techniques as needed.

Not all prompts are created equal. As you become more comfortable, you can vary your prompting style.
. . . [
Generally, we can think of four levels of prompting (as illustrated above)

1. Structured "Training Wheels" Prompting - We discussed this earlier: using a very explicit format with
labeled sections (Context, Task, Guidelines, Constraints). This is level 1. It's great for beginners or
complex multi-step tasks to ensure you don't miss details - [2]. The example in the previous section
with the login page is a training-wheels prompt. Pros: very clear for the Al; Cons: a bit verbose to write
every time.

2. Conversational Prompting (No Training Wheels) - At level 2, you talk to the Al more naturally, like
you would to a colleague, without strict section labels [2]. You still provide clear instructions, but it
reads more like a paragraph of guidance than a form. For example, a conversational prompt might be:
"Let's add a profile picture upload feature. Create an upload form that saves the image to storage and
updates the user's profile. If the file is too large, show an error message." This is a single, flowing request
(maybe with a couple line breaks) covering what's needed [2]. It's easier to write once you know what
details to include. Many users start structured, then move to conversational as they gain confidence .
Just remember: even when conversational, be organized and thorough - you can use multiple
sentences or bullets to keep it clear.

3. Meta Prompting (Al-Assisted Prompt Improvement) - This is an advanced technique where you
ask the Al to help you write a better prompt ! It sounds circular, but it works. If the Al's output isn't
what you expected, you can literally show the Al your prompt and say "How can | improve this prompt?"
or "Tell me if my request was unclear and rewrite it more clearly.” Because the Al (especially in Chat Mode)
can reason about language, it will often point out ambiguities or add details to make the prompt
stronger [2]. Think of it as the Al becoming your prompting coach. Just do this in a safe-to-experiment
context (Lovable's Chat mode or even an external chat like ChatGPT), so it doesn't mess up your project
while it's analyzing the prompt. Meta prompting is powerful for learning prompt engineering - the Al
might reveal nuances you didn't consider and essentially teach you to ask it better.

4. Reverse Meta Prompting (Al as a Documentation Tool) - Level 4 flips things around: after the Al has
done something, you ask it to summarize or document what it did, or even to write a prompt that
would reproduce the outcome = [2]. This is great for creating documentation or reusable prompts for
the future. For example, say the Al helped you fix a tricky bug after several back-and-forth messages.
You can then prompt: "Summarize how we fixed the login bug and give me a reusable prompt to set up
login correctly next time." The Al might produce a short paragraph explaining the fix and then a

FAn

Page 4 of 14

Lovable Prompting Guide for No Code Builders

generalized prompt you could use in a new project to avoid the issue . Reverse meta prompting
basically turns the Al into a scribe that records your successful solutions. This helps you build a
personal library of prompts and learn from mistakes [2]. In Lovable, you could even add those Al-
generated summaries to your Knowledge Files so that future projects benefit from past lessons.

You don't have to rigidly choose one level - in practice, you'll mix them. For everyday use, you'll mainly
write normal prompts (structured or conversational). But keep the meta techniques in mind as you
progress; they can save a lot of time in complex scenarios or when debugging.

Example Prompts for Common Use Cases

Now let's look at some real-world example prompts in Lovable for various application types. We'll cover
prompts for building a SaaS app, an e-commerce site, a CMS, and a simple website. These examples
illustrate how to apply the principles above in practice. You can use them as starting templates and adjust
details to fit your own project.

Saas Application Prompts

A typical Saa$S application might include user accounts, a subscription/payments system, and a secure
dashboard or interface for the product. With Lovable, you can scaffold such an app in a few prompts. It's
wise to build it step by step. For instance:

e Starting a SaaS App (Project Setup): Begin by describing the core idea and tech stack. This is often
your first prompt to Lovable to kick off the project.

I need a **SaaS web app** for project management with:
- **Tech Stack:** React (Vite) front-end with Tailwind CSS, and Supabase for auth & database.
- **Key Features:** User registration & login, creating projects and tasks, and a dashboard overview page.

Start by generating the **main dashboard page** after login, which includes:
- A navigation header with the user's name and a logout button.

- A section listing the user's projects (just use dummy data initially).

- A button to **Create New Project**.

Ensure the design is clean and responsive. Use Tailwind CSS for styling.

What this prompt does: It clearly defines the app type and stack (so the Al will set up Supabase auth,
etc.), lists core features (projects and tasks), and then focuses on one page to build first - the

[8] [8] L . . J—
dashboard . This gives Lovable a concrete starting point. The Al will likely scaffold a React app, set
up Supabase authentication (since we mentioned it), and create a dashboard component with
placeholder project data. We also included design guidance (clean, responsive, Tailwind). After this
runs, we'd have a basic working app shell with a dashboard.

e Adding Authentication: Lovable may add email/password login by default when it sees Supabase, but
it won't redirect flows unless told. After the dashboard, we ensure users can sign up and log in:

Page 5 of 14

Lovable Prompting Guide for No Code Builders

Add **user authentication** (if not already setup):

- Include a Sign Up page and a Login page (email & password via Supabase).

- When a new user clicks "Get Started" on the landing or tries to access the app without being logged in,
redirect them to sign up.

- After login or sign up, take the user to their dashboard page.

Here we explicitly prompt for sign-up/login pages and a redirect logic [5]. The Al will create the
necessary pages and routing (using Supabase for auth). This kind of prompt is usually short and to the
point, because authentication is a well-defined feature. Always specify the redirect or post-login
behavior so the Al knows how the flow should work (dashboard after login, etc.).

Implementing a Feature (e.g., Stripe Payments): Suppose our SaaS is a paid product - we want to
add subscriptions using Stripe. Lovable has Stripe integration, but we need to tell it when to require
payment. A prompt could be:

Implement **subscription payments** using Stripe:

- Only allow full access to the app for paid users.

- Use Stripe Checkout for a subscription. If a user is not subscribed, when they log in, redirect them to a
pricing/checkout page.

- After successful payment, mark the user as premium and let them use the dashboard and project features.
- Include a "Manage Subscription" link (customer portal) in the user's account settings.

This instructs the Al to integrate Stripe payments and enforce access control based on subscription
status = [5]. Lovable knows about Stripe, so it can create an Edge Function or API route for the Stripe
checkout and wire it up. We gave it clear conditions: if not subscribed, go to checkout; if subscribed,
allow access. As a result, the Al might generate some code that checks the user's subscription status
(likely stored in Supabase or returned from Stripe webhooks) and gating logic in the front-end. Always
test this flow - you might use Stripe test mode keys. Lovable's docs suggest using test mode while

developing el

Refining the Dashboard (Ul polish): After functionality is in place, you might refine the Ul. For
example: "Improve the dashboard Ul: use a grid layout for project cards, add some color styling, and make it
mobile-responsive." This kind of prompt focuses on visual improvements without altering
functionality. You should explicitly say "don't change functionality" if you only want a cosmetic update
°l [8]. The Al will then adjust CSS/JSX for layout and styling. (If you have a specific style in mind, mention
it - e.g. "give it a modern Saas$ look with a light background and accent color #3B82F6".)

Each of these prompts tackles a specific aspect of the SaaS. By dividing it up (project setup, auth,

payments, Ul tweaks), we reduce errors and maintain control. Between prompts, you'd check the app's

behavior. If something's off, you can prompt to fix it (e.g. "The logout button isn't working - fix that bug" or
"Align the login form to the center"). Using Chat Mode is especially useful here - you can converse with the

Al about a bug: "l get an error when a new user signs up. Here's the error log... How do | fix it?" The Al can

debug step-by-step with you

[4] [5]

Tip: For SaaS apps (or any multi-feature app), a recommended workflow is: Ul first, then database, then

. . . [5] - .
auth, then core features, then integrations like Al or payments . This aligns with how we prompted

above. It helps to "layer" the complexity. Lovable's SaaS guide emphasizes starting with front-end pages,

rrrrrr

Page 6 of 14

Lovable Prompting Guide for No Code Builders

151 151

then connecting Supabase, then enabling auth, and so on . Following a logical sequence in prompting

will save you headaches.

E-commerce Application Prompts

Next, consider an e-commerce app. Key pieces include a product listing page, product detail page,
shopping cart, and a checkout process. You might also need user accounts for order history. With Lovable,
you can generate a basic store quickly.

e Initial Storefront Prompt: Describe the overall store functionality and core pages:

Create a starter **e-commerce store** with:

- A **Home page** that lists products (image, name, price) and allows searching & filtering by category.

- A **Product Detail page** for each item with photos, description, price, and an "Add to Cart" button.

- A **Shopping Cart page** that shows selected items, quantities, and total price, with a Checkout button.

- User accounts for customers to sign up/sign in, so they can view an **Order History** page after purchase.

Use a clean, conversion-oriented Ul (think modern online shop). For now, use dummy product data.

This single prompt gives a high-level spec for the e-commerce app °l [8]. The Al will likely scaffold
multiple pages/components: a listing page, product page, cart page, etc., and set up routes between
them. Because we mentioned user accounts, it should include an auth flow (possibly using Supabase by
default for sign-up/login). We also hinted at an order history page. At this stage, without actual
payments integration, the "Checkout" could just simulate an order or record it in the database. Always
specify using dummy data initially - that frees the Al to create placeholder products and not worry
about where real data comes from.

e Adding Checkout/Payment: Lovable can integrate with Stripe or other payment APIs. You might
prompt: "Integrate a checkout using Stripe for the cart." But an easier route: since Lovable supports Stripe
out-of-the-box, you could connect your Stripe API keys in the Integrations panel and then prompt
something like:

Enable **Stripe checkout** for the shopping cart:

- When the user clicks Checkout, use Stripe to process the payment for the items in the cart.

- After payment, create an Order record (with items, totals, and user info) in the database.

- Then show an **Order Confirmation page** with the order details and a thank-you message.

This instructs the Al on the flow around checkout. It may generate an Edge Function or serverless
function to handle Stripe payment intents and listen for a success callback. It will also create an Order
model in the database (since we said to record an order) - likely using Supabase tables for orders and
order_items. After this prompt, test the checkout in Stripe's test mode.

e Product Management (Admin) [Optional]: If you want a back-end interface to add/edit products (a
mini CMS for products), you could prompt an admin page. For example: "Create an Admin Dashboard for
managing products, accessible only to admin users. Include a form to add new products with fields: name,
description, price, image URL, category." Lovable will generate an admin page and components for the

Page 7 of 14

Lovable Prompting Guide for No Code Builders

form, plus probably gate it behind an admin check (you might need to specify how to mark an admin -
e.g. "assume the first user is admin" or use a role in Supabase Auth).

e Ul and UX Refinements: As with the SaaS example, you can polish the e-commerce Ul via prompts:
"Make the product listing grid responsive with 3 columns on desktop and 1 column on mobile. Improve the
product card design with a shadow and padding.”" The Al can adjust Tailwind classes or CSS accordingly. If
something specific looks wrong (like an image stretching), describe it: "The product images look distorted;
keep aspect ratio and make them the same height." Because e-commerce sites are visual, consider using
images: e.g. screenshot a nice card design or layout from another site and ask Lovable to mimic that
style.

Overall, Lovable significantly accelerates e-commerce development. It can scaffold the major components
of a store in prompts that take minutes, a task that might take days by hand. Just be sure to clearly outline
the key pages and interactions (view product, add to cart, checkout, etc.) in your prompts so nothing is
missed. Pro tip: Focus on the customer flow in your description: browsing products viewing one adding to
cart checkout confirmation. If your prompt covers those steps clearly, the Al will likely wire the pages
together correctly.

CMS (Content Management System) Prompts

For a CMS or blog platform, the requirements are a bit different. You need content creation tools
(possibly a rich text editor), and listing of content (blog posts or articles), possibly with an admin interface
and maybe public-facing pages for the content.

Let's say we want a simple blog CMS where admins can write posts and publish them.

e CMS Base Prompt:

Build a basic **CMS for blog posts**:

- Include an **Admin Dashboard** where | can create, edit, and delete posts. Each post has a title, author,
content (rich text), and publish date.

- The content editor should allow **rich text formatting** (bold, links, etc.) and image uploads for the blog
content.

- A **Posts List page** (blog index) that shows all published posts with title and snippet, sorted by date.

- A **Post Detail page** that displays the full content of a single blog post.

- Also include basic **SEO fields** (meta title & description) for each post.

This prompt outlines both the admin side and the public side [8]. Lovable will likely create an admin
section (maybe under a route like /admin or a separate admin mode), which includes a form for writing
blog posts. By mentioning rich text and image uploads, we signal it to perhaps integrate a rich text
editor component and handle file uploads (which it might do via an integration or an HTML editor). It
will also generate listing and detail pages for posts. The mention of SEO might encourage it to include
meta tags or at least fields in the post model for SEO information.

After running this, you'd have a basic content system. You'd probably test adding a post via the Ul it

made. If the editor is too basic (maybe it starts with a simple textarea), you can refine: "Use a rich text
editor for post content (e.g., TipTap or QuilllS) so | can format text and add images easily." Lovable might
then integrate a popular React rich text component or use a pre-built one from its library.

Page 8 of 14

Lovable Prompting Guide for No Code Builders

e User Roles (Admin vs Public): Ensure that only you (admin) can access the editing interface. If Lovable
hasn't already enforced that, prompt it: "Protect the admin routes - only allow logged-in admin users.
Other users (or not logged in) should not access the admin pages.” If you have a login system, you might
need an "admin" flag on the user. Lovable's Clerk integration or Supabase auth could manage roles.
You could simplify and say "Assume any logged-in user is an admin for now" for a single-user scenario.

e Publishing Workflow: Maybe you want drafts vs published posts. You can specify that: "Add a
'Published' toggle for posts. Only posts marked published appear on the public Posts List." The Al can add a
boolean flag and filter accordingly.

e Front-end Display: You can style the blog list and post pages via prompts as well. For example: "On the
Posts List, show each post's title, date, author, and first 200 characters of content as a preview, with a 'Read
more' link." And: "On the Post Detail page, display the content with proper formatting (headings, paragraphs,
images). Make the layout nice for reading - perhaps a centered column."” These guide the Al to focus on the
presentation. It might use a Markdown renderer or just output the HTML from the rich text.

A CMS built this way will still be relatively simple, but it covers the fundamentals: create content, store it,
list it, display it. Lovable can handle the database and API part (storing posts, retrieving them). One thing
to consider is knowledge files or long text: if your posts are very long, you might rely on the Al to
generate code to handle that (like pagination or loading partial content). Usually, though, for moderate
content, it's fine.

Finally, remember to try out the flows: create a post, view it as a reader. If something fails (image upload
not working, etc.), use the error messages in a prompt: "Fix the image upload feature - | got this error: [paste
error]." Debugging prompts are normal in this process

Website / Landing Page Prompts

Lovable isn't just for complex apps - it's also great for building websites and landing pages quickly. Let's
cover two common cases: a marketing landing page, and a contact form page on a website.

e One-Shot Landing Page: If you just want a single page generated, you can do it with one prompt. For
example:

You are a creative web designer. Build a **landing page** for a **space tourism agency** targeting wealthy
individuals.

The page should feel luxurious and adventurous. Highlight the experience of zero-gravity flights and premium
space travel packages.

Include a big bold headline, a section for features/benefits, testimonials from famous clients, and a call-to-
action button to "Join the Mission".

Follow conversion rate optimization best practices (clear CTA, social proof, etc.).

This prompt, adapted from Lovable's docs [11], sets a scene (space tourism for wealthy clients) and asks
for a full landing page. We gave the Al a persona ("you are a creative web designer") which sometimes
helps set the tone. We also listed specific sections to include. Lovable will likely produce a visually rich
page with placeholder images (maybe an astronaut background), lorem ipsum text for testimonials
unless it fabricates some (be wary of Al inventing fake testimonials - you might need to edit those).

Page 9 of 14

Lovable Prompting Guide for No Code Builders

After it's generated, review the design. If something is off (maybe the style isn't luxurious enough), you
can prompt changes: "Make the design more high-end: use dark background with stars, and gold accent
colors." The Al can then restyle accordingly.

Lovable's landing page guide suggests you can either do it "one-shot" like above or section-by-section
[11]. Section-by-section means you prompt for one section at a time, which gives more control. For
instance, "Add a hero section with a background video of space and a headline...", then "Now add a pricing
section with three pricing tiers."” This iterative build may be easier if you have a clear idea of each part.

Multi-section Website (with Contact Form): Consider a small business website with multiple pages
(Home, About, Contact). You can start page by page. For the Contact page with a form, for example:

Create a **Contact Us page** with a simple contact form:

- Fields: Name, Email, Phone, and Message (textarea).

- A Submit button that sends the form data.

- When submitted, show a thank-you message or confirmation.

- (If possible, also send an email notification with the form details to our support address.)
Make the page clean and user-friendly, with our company's branding colors (blue and white).

This prompt asks for a contact form and even hints at sending an email. Lovable can handle sending
emails if integrated with a service like Resend [6], but if you haven't set that up, the Al might just log the
message or store it. You explicitly mention the confirmation message on submit (important for user
UX). After this, the Al will produce the Contact page and the form functionality. Test the form in the
preview - when you hit Submit, see if it prints the data or tries to call an API. If you did configure Resend
or another email APl in Lovable's integrations, the Al could wire the form to send an email (since we
prompted for it). Otherwise, you might get a placeholder result.

You could also prompt: "Connect this form to send an email using Resend APl when submitted" once you
have an API key set up, and cite the Resend integration. But that's an advanced step. At minimum, you
have a working form Ul and could manually handle submissions later.

About or Info Pages: These are mostly static content. You can just prompt: "Add an About Us page with
two columns - one with an image of our team and one with text about our mission. Use a serif font for a
formal look." The Al will create a new page and route for /about with that content. Static pages are
straightforward for it.

Global Nav and Footer: If you build multiple pages, you'll want a consistent navigation menu and
footer across them. Lovable often creates a navbar if you mention multiple pages. If not, prompt it:
"Add a top navigation bar with links to Home, About, Contact on all pages.” And "Add a footer with our
company (c) info and social media links." Because these elements repeat, the Al might factor them into a
layout component or just duplicate them - check the code. Ensuring consistency might involve using
the select tool on the header and saying "Use this same header on all pages" (the Al could convert it into
a shared component).

One great thing about Lovable for websites is you can experiment with design themes easily. For

example, "Restyle the site with a dark theme and glassmorphism effects." Or "Make the landing page use a neo-
brutalism design (bold colors, heavy borders, etc.)." The Al will apply creative style changes, which is fun and

saves you from manually tweaking CSS. Always specify "without changing content or structure" if you only
want stylistic changes, to avoid accidental layout rearrangements

Page 10 of 14

Lovable Prompting Guide for No Code Builders

Additional Examples and Prompt Patterns

Beyond these scenarios, Lovable's documentation provides a Prompt Library with many reusable
examples # [8]. Here are a few diverse prompt ideas (with brief context) to spark your imagination:

e Prototype a Feature: "Add a chat interface to the app where users can message an Al assistant. Use
OpenAl's API (GPT-4) to respond to user inputs. Include a message list and an input box, with typing
indicators." - This would utilize Lovable's Al integration to create a chat feature. Always ensure you have
an API key set for OpenAl and prompt clearly about using it e [12].

e Refactor Code: "Refactor the code for the ProjectList component to improve readability and maintainability,
without changing its functionality." - This prompt instructs the Al to clean up code, a useful maintenance
task [8]. Lovable's Al can rename variables, break large functions into smaller ones, etc., while
keeping the output the same !

¢ Integrations: "Embed a Google Map on the Contact page showing our office location (using Mapbox or
Google Maps API). Add a marker at our address and make sure the map is responsive.” - The Al can
. . . N AR . .
incorporate a map widget, as Lovable supports Maps integration . You might need to provide an

API key (for Google Maps, etc.) via Lovable's integration settings, but the prompt tells it what to do.

e Using Knowledge Base: If you have a long specification or content piece (like a privacy policy text or a
list of product FAQs) that you want in the app, you can put that text into a Knowledge File in Lovable,
then prompt: "Insert the FAQ content from the knowledge base into an FAQ page on the site, with each
question as a collapsible section.”" The Al can retrieve the content from the knowledge base and format it,
saving you from including it in the prompt itself [8].

In all cases, remember you can refine the output. If the first attempt isn't perfect, clarify and try again. Use
the Al's help to debug or improve as needed - that's what it's there for!

Best Practices Summary

Let's consolidate some of the key best practices for Lovable prompting:

7
e Plan in Small Chunks: Define and build one piece of functionality at a time []. This makes it easier to
manage and yields more accurate outputs. Before prompting, think "What's the next small increment |
can do?"

e Be Explicit and Unambiguous: Always describe exactly what you want. If a detail is important, include
2
it. If something is NOT wanted, mention that as well []. Don't assume the Al will "figure it out" - spell it
out.

e Use Iteration to Your Advantage: You can always refine the app. It's normal to go through multiple
prompt cycles to polish a feature. Encourage a dialog: "That's not quite right, please adjust X..." The Al will
follow your lead. This beats trying to write a "perfect" prompt first try.

e Leverage Lovable Features: Use the visual editor for quick fine-tuning (especially spacing, colors -
sometimes dragging is faster than describing). Use Select & Edit to target prompt changes to specific
components. Use Chat mode for brainstorming, debugging, or asking "how to" questions without

Page 11 of 14

Lovable Prompting Guide for No Code Builders

altering your project until you're ready * And integrate images or sketches to guide design when
possible.

e Keep Context Fresh: If your project has a lot of prior prompts (long session), occasionally re-state
important context in a new prompt ("We have feature X already, now do Y") so the Al doesn't lose track.
Or utilize Knowledge Files for global context (like style guidelines or data models) that the Al can refer
to across prompts el

o Test Frequently: Run the app preview and test flows as you add features. It's easier to catch and fix an
issue right after adding a feature than after you've added 10 features. If you notice a bug, address it
sooner than later - prompt the fix or ask the Al for help debugging before moving on. This incremental
testing approach will save time.

e Save Your Work: Even though Lovable is no-code, it's still coding under the hood. Connect the GitHub
integration so all code is version-controlled [4]. That way you can always revert if something goes awry.
Additionally, Lovable has an "Undo" and you can lock critical files if needed to prevent changes e
(for example, once your login logic works, you might lock it so that later prompts don't accidentally
modify it).

By following these practices, you'll maintain a smooth development flow and get the most out of Lovable's
Al capabilities.

Common Mistakes to Avoid

Even with best practices, it's easy to make some mistakes when starting out. Here are some common
pitfalls in Lovable prompting - and how to avoid them:

e Vague Prompts: The number one mistake is being too high-level or unclear. Saying "Build me a site
about cars" will yield something very unpredictable. Always add specifics: what pages? what features?
what style? Who is the user? A good prompt is detailed but to-the-point. If you get weird or irrelevant
output, chances are the prompt was under-specified or ambiguous.

e Overloading One Prompt: Asking for too many things at once can confuse the Al or result in partial
implementation of each. For example, "Create a blog site with 5 pages, and also set up an e-commerce
store in it, and add a chat widget" is probably too much for one go. Break it into separate prompts for
the blog and the store. Lovable (and the underlying Al) do better when focused [7]' If you notice the Al's
response is incomplete or it ignored part of your request, it might be because the prompt had too
many objectives - try splitting it.

¢ Ignoring Al Clarifications: Sometimes, the Al might respond with a question or need clarification
(especially in Chat mode). For instance, it might ask, "Should | use technology X for this feature?" or "Do
you have an APl key for service Y?". Don't ignore these! They indicate the Al needs guidance. Answer
them explicitly and the build will go smoother. Skipping clarifications can lead to the Al making a wrong
assumption or stalling.

¢ Not specifying visual/design expectations: If you don't mention anything about how it should look,
the Al will do something functional but maybe not the style you wanted. It's not actually a mistake, but a
missed opportunity. Always consider adding a line about design ("modern and minimal" or "playful and
colorful", etc.). Otherwise you might end up re-styling everything later via prompts. Remember, Lovable

Page 12 of 14

Lovable Prompting Guide for No Code Builders

prides itself on creating beautiful designs out of the box, but "beauty" is subjective - so give a hint of
your aesthetic preferences.

e Vague references to elements: Saying "make the button bigger" when you have many buttons on the
page can be problematic. Which button? The Al might guess and change the wrong one. It's better to
use the select tool or otherwise identify it ("the Sign Up button at the top right"). Similarly, avoid
instructions like "change that blue section to green" without clear context - the Al might not be sure
what "that section" refers to. Be specific or use the Ul selection features to anchor your instruction 7

¢ Not leveraging iterations: Sometimes users write a prompt, get output that's 70% correct, and feel
disappointed or stuck. They might try a completely new prompt from scratch, losing the progress.
Instead, iteratively refine. It's usually easier to fix the 30% that's wrong by telling the Al what to
change than to start over. For example, if the layout is right but the content is wrong, just address the
content in the next prompt. Don't throw away the good parts.

e Making huge changes late in the process: If you have a nearly complete app and then decide
"Actually, now make it multi-tenant and change the database structure," you're in for a rough time - not
impossible, but it may confuse the Al or break existing stuff. Try to plan the fundamentals early (data
models, major features). Late-stage big pivots are challenging for Al just like they are for human devs. If
you must do a big change, consider using Chat mode to plan it out step by step with the Al before
executing, or even start a fresh project and port features over (using your exported code).

e Forgetting to test edge cases: The Al will often implement the happy path (the straightforward
scenario) and might not anticipate edge cases unless you prompt it. Common example: a form that
doesn't handle empty input errors until you say "what if the user leaves a field blank?" Always think of
edge cases and ask the Al to handle them. If you don't, you might only discover issues when a real
user/tester does something unexpected. Prompting about error handling and validations is a good
practice to avoid this.

¢ Not reading documentation/feedback: If something isn't working, check Lovable's documentation or
the community. The Lovable team has likely addressed common questions (like "How do | integrate X?")
in docs or their Discord [4] [4]. Also pay attention to any warnings Lovable shows. For example, if you
exceed messaging limits or if a certain integration needs setup, Lovable might display a note - don't
ignore those.

By being mindful of these pitfalls, you can steer clear of them. Most issues are solved by remembering to
be clear, stepwise, and interactive with the Al. And if all else fails, reach out to the Lovable community -

. . . (1310131
many users share prompt tips and solutions for specific use cases .

Conclusion

Prompting in Lovable is a skill that improves with practice. At first, it might feel magical to "describe an app
and get code," but as you've seen, the real magic comes from learning how to communicate with the Al
effectively. You've learned to structure prompts, iterate, and use Lovable's tools to guide the Al. With
these techniques, non-programmers can build surprisingly sophisticated SaaS apps, e-commerce sites,
CMS platforms, and websites - all without writing code.

Page 13 of 14

Lovable Prompting Guide for No Code Builders

To recap, always start with a clear vision of what you want to build. Use Lovable's Chat mode to hash out

. . o . . . (4] . .
the idea with the Al (it's like brainstorming with a teammate) . Then proceed in stages, prompting for
each feature or section. Keep your instructions concise, explicit, and contextual. Don't be afraid to correct
the Al or try rewording a prompt; it's a collaborative process. And take advantage of Lovable's integrations

(database, auth, payments, etc.) by mentioning them in your prompts - the heavy lifting is often handled

7] [4
for you automatically[It].

Finally, remember that you own the code Lovable generates. Once your app is built, you can download
the code or sync to GitHub and treat it like any other project ". This means you have full freedom to
extend it beyond Lovable's Ul if needed, or just keep iterating within Lovable until you're ready to launch.
Deployment is one click away when you're done (you can host on a .lovable.app domain or your custom
domain easily) .

We hope this guide has demystified Lovable prompting and given you the confidence to build your dream
project. With clear instructions and a bit of creativity, there's little you can't build with Lovable. Happy
prompting, and happy building!

Sources: The information and examples above were based on the official Lovable documentation and

2112 81 [8
community guides, including Lovable's Prompting 1.1 handbook[.], the Prompt Library examples eIl],

. . [51 1111 — [41 3]
SaasS and Landing Page guide docs , as well as insights from Lovable's FAQ and blog posts . These
resources provide further reading and examples for those who want to dive deeper into prompt
engineering with Lovable.

Links

[11 Welcome - Lovable Documentation

[2] Prompting 1.1 - Lovable Documentation

[3]1 The Lovable Prompting Bible - Lovable Blog

[4] FAQ - Lovable Documentation

[5] SaaS - Lovable Documentation

[6] Integration with Resend - Lovable Documentation
[7]1 How to Quickly Build SaaS Products With Lovable Al (No Coding)
[8] Prompt Library - Lovable Documentation

[9] Debugging Prompts - Lovable Documentation

[10] The Lovable Prompting Bible - Lovable Blog

[11] Landing Page - Lovable Documentation

[12] Prompts & Integrations - Lovable Documentation

[13] Inspiration time - Lovable Documentation

Page 14 of 14

https://docs.lovable.dev/introduction#:~:text=Build%20real%20web%20apps%20fast,using%20natural%20language%20with%20Lovable)
https://docs.lovable.dev/tips-tricks/prompting-one#:~:text=Prompting%20refers%20to%20the%20textual,prompts%20lead%20to%20better%20results)
https://lovable.dev/blog/2025-01-16-lovable-prompting-handbook#:~:text=AI%20models%2C%20including%20those%20powering,To%20guide%20them%20effectively)
https://docs.lovable.dev/faq#:~:text=What%E2%80%99s%20the%20best%20way%20to,structure%20a%20project%20in%20Lovable)
https://docs.lovable.dev/use-case/saas#:~:text=Save%20Tokens)
https://docs.lovable.dev/integrations/resend#:~:text=Resend%20is%20an%20email%20API,sending%20transactional%20and%20marketing%20emails)
https://www.productcompass.pm/p/how-to-create-saas-apps-with-lovable-ai#:~:text=Best%20practice%201%3A%20Precisely%20define,small%20tasks)
https://docs.lovable.dev/tips-tricks/prompting-library#:~:text=,adapts%20to%20different%20screen%20sizes)
https://docs.lovable.dev/tips-tricks/prompting-debugging#:~:text=Building%20with%20AI%20is%20fast,turn%20them%20into%20learning%20opportunities)
https://lovable.dev/blog/2025-01-16-lovable-prompting-handbook)
https://docs.lovable.dev/use-case/landing-page#:~:text=Prompt%20Example%3A)
https://docs.lovable.dev/integrations/prompt-integrations#:~:text=Example%20prompts%20to%20get%20started%3A)
https://docs.lovable.dev/tips-tricks/inspiration#:~:text=Full)

